Scientific Notation

Tuesday, March 30, 2021 4:04 PM

$$
10^3 - k
$$
 kilo
\n $10^6 - M$ mega
\n $10^{-6} - M$ mega
\n $10^{-6} - M$ micro
\n $10^{-4} - M$ micro

$$
10^{-12} - p
$$

Circuits, Current, Voltage

Tuesday, March 30, 2021 3:31 PM

Current (I)

Tuesday, March 30, 2021 4:10 PM

$$
\rightarrow 5A
$$
 is equivalent to $\leftarrow -5A$

Voltage (V)

Tuesday, March 30, 2021 4:15 PM

Def	Voltage	V = $\frac{\partial W}{\partial q}$ and $\frac{\partial W}{\partial r}$ the electric energy per charge.	
where W $\frac{\partial W}{\partial q}$ in joules			
2	is charge in coulombs		
Mode	loss	unit	Volb
Mode	is	directioned	
Thus	$\int_{A}^{1} V_{AB}^{V} A_{B} = V_{A}^{V} B$	equivalent at $\omega - \sqrt{\frac{1}{18}} = -\sqrt{\frac{1}{8}} B V_{A}$	
Thus	$\int_{B}^{1} V_{AB}^{V} A_{B} = V_{A}^{V} B$	equivalent at $\omega - \sqrt{\frac{1}{18}} = -\sqrt{\frac{1}{8}} B V_{A}$	

Power (P)

Tuesday, March 30, 2021 4:20 PM

10.65 Power is carried by an electric charge.

\n
$$
P = \frac{\partial W}{\partial t} = \frac{\partial W}{\partial \varrho} \times \frac{\partial \varrho}{\partial t} = V \times I
$$
\nand has unit Watt

\n11.106 The net power for a circuit is 0.

Example Power Absorption/Delivery

Tuesday, March 30, 2021 4:25 PM

Elements

Tuesday, March 30, 2021 4:36 PM

Voltage Source

Tuesday, March 30, 2021 4:34 PM

Independent Source Dependent Source V
V
Some voltage dependent
on the circuit
anything $Symbo!$ $+$ $Symbol:$ $+ 5V -$ Currents through voltage sources can be anything.

Current Source

Tuesday, March 30, 2021 4:37 PM

Independent Source Dependent Source $\begin{picture}(120,110) \put(0,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150}} \put(15,0){\line(1,0){150$ $Symbol$ $Symbo$ \bigodot - $T = 4A$ $I - A$ Triment dependent on
the circurt. Voltage across current sources can be anything

Example of Dependent Sources

Thursday, April 1, 2021 3:38 PM

 SA ¹

Resistors

Thursday, April 1, 2021 4:03 PM

$$
\frac{Symbol}{T}
$$

Resio bance of a resistor is specified in ohms
$$
\Omega
$$

Resistors are passive elemus, current always Slous from (4) = (-)
Power absorbed by a resistor = V·I = $\Gamma^2R = \frac{V^2}{R}$

Ohm's Law

Thursday, April 1, 2021 4:04 PM

For a resistor! MM, V=I *R where Vis the voltage across the resistor, I is the current, and R is the resistance in ohms. They are signed. \mathcal{I} s lope = $\frac{1}{R}$ $\sqrt{ }$

Resistors in Series

Tuesday, April 6, 2021 4:40 PM

Resistors in Parallel

Thursday, April 8, 2021 3:38 PM

Note The resistance of resistors in parallel is the reciprocal of the sam of the reciprocal of resistances.

$$
I_{1} = I \cdot \frac{R_{2}}{R_{1}+R_{2}} \qquad \frac{notize: it is theresistance of other
$$
I_{2} = I \cdot \frac{R_{1}}{R_{1}+R_{2}}
$$
$$

Voltmeter, Ampmeter

Thursday, April 8, 2021 4:46 PM

measures the voltage between the two points. $Voltmeter$: has no current that Stons through it, so it does not affect the circuit. Ampmeter: measures the current flowing through it. has no voltage drop across it, so it does not affect the circuit.

Open and Short Circuits

Thursday, April 1, 2021 4:10 PM

Kirchhoff's Laws

Thursday, April 1, 2021 4:33 PM

KCL (Current Law) The incoming currents of any node must equal the currents learing the node. That is, the sum of the individual currents going in to a node must equal che sum of the outgoing currents.

Tuesday, April 13, 2021 3:40 PM

Node Voltage Method

Tuesday, April 13, 2021 3:56 PM

I. Assign voltages to each node given some arbitrary ground 2. Work out the currents in relation Lo assigned voltages $3.$ Apply KCL on the nodes and solve for unknowns . Write that the incoming and outgoing currents must be equal for any groups of elements. We can group these together KCL and call them supernodes Supernodes with \int multiple elements must terminate at the same two points. . If there are voltage sources, we can pretend they one "supernode" for KCL, that is we pretext $\alpha r e$ that the voltage source is just a node. $Example:$

 $KCL \quad \textcircled{e}$ supernacle (V_1, V_2) : $I_1 + I_4 = I_2 + I_3$

Mesh Current Method

Thursday, April 15, 2021 3:27 PM

- 1. Assume mesh currents
- 2. Work out the voltages
- 3. Apply KVL to meshes
- Note: If there are current sources, we can bypass them by going around them. Since voltages across current Sources can be anything, we need to create these "super meshes".

Linear Circuit Theorems

Thursday, April 15, 2021 4:44 PM

2. Source Transformation. We can $convert$

 N_{abc} V_{oc} = $V \cdot R_{tn}$ I

Solving for Thevenin's Equivalent Circuits

Tuesday, April 27, 2021 4:38 PM

Property of Thevenin Equivalent Circuits

 $V_{oc} = R_{c} I + V$

& Report

Norton Equivalent Circuits

Thursday, April 29, 2021 3:57 PM

Max Power Delivery
Thursday, April 29, 2021 4:21 PM

Thursday, April 29, 2021 $\frac{1}{x}$ γ R_{th} \overline{A} $\frac{1}{2}$ $\sqrt{ }$ R_{load} V_{th} \leftarrow

$$
Max
$$
 power observed by R
\n
$$
V_{th}
$$
 = T. R
\n
$$
V_{th}
$$
 = T. R
\n
$$
P_{th}
$$
 + R
\n
$$
P_{out}
$$
 = V. T =
$$
\frac{V_{th}^{2} R_{total}}{(R_{th} + R_{total})^{2}}
$$

$$
\frac{\partial P}{\partial R_{L}} = \frac{V_{bh}}{(R_{th} + R_{load})} \cdot (R_{th} - R_{load})
$$
\nwe want this is be 0.

$$
Ma_{\gamma}
$$
 power is when $R_{L} = R_{th}$
\n
$$
\frac{V_{th}^{2}R_{th}}{4R_{th}} = \frac{V_{Ln}^{2}}{4R_{th}}
$$

Capacitors

Tuesday, May 4, 2021 3:40 PM

Capacibors are buro conductors separated by an insulator. It does not allow DC current to flow, but can produce displacement current. as $t \rightarrow \infty$ and $I = C \cdot \frac{\partial V}{\partial t}$
 $V \rightarrow V_s$
 $V(t) = \frac{1}{C} \int_0^t I(t) dt + V(0)$ $\sqrt{\ }$

Capacitor Properties

Tuesday, May 4, 2021 3:55 PM

Energy Stored in Capacitor

Tuesday, May 4, 2021 3:55 PM

Capacitor Steady State

Tuesday, May 4, 2021 4:02 PM

Capacitors in Parallel

Capacitors in Series

Capacitor Voltage over Time

Tuesday, May 11, 2021 3:47 PM

Tuesday, May 11, 2021 3:47PM
\n
$$
V(E) = V(s + [V(0) - V_s]e^{-\frac{t}{RC}}
$$

\n $= V(\infty) + [V(0) - V(\infty)]e^{-\frac{t}{RC}}$
\n $= V(\infty) + [V(0) - V(\infty)]e^{-\frac{t}{RC}}$
\n $= V(\infty) + [V(0) - V(\infty)]e^{-\frac{t}{RC}}$
\nwhere V(\infty) is the steady state voltage

Inductors

Steady state: V=0 (short circuit)

Energy Stored in Inductor

Tuesday, May 4, 2021 4:36 PM

$$
E = \frac{1}{2} V I J E = \int L \cdot \frac{\partial I}{\partial t} I J E = \frac{1}{2} L I^2
$$

Inductors in Series

Tuesday, May 4, 2021 4:45 PM

Inductors in Parallel

Tuesday, May 4, 2021 4:47 PM

 T_{6} = I_{1} + I_{2} + I_{3}

 $V = L_1 \frac{\partial L_1}{\partial t} = L_2 \frac{\partial L_2}{\partial t} = L_3 \frac{\partial L_3}{\partial t}$

Equivalent inductance: $\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$

Inductor Current over Time

Tuesday, May 11, 2021 3:46 PM

$$
I(\theta) = I(\theta) = I(\theta) e^{-\frac{Rt}{L}}
$$

\n
$$
I(\theta) = I_{s} + [I(\theta) - I_{s}] e^{-\frac{Rt}{L}}
$$

\n
$$
= I(\infty) + [I(\theta) - I(\infty)] e^{-\frac{Rt}{L}}
$$

\n
$$
I(\infty) = I_{s} - I(\infty) e^{-\frac{Rt}{L}}
$$

\n
$$
I(\infty) = I(\infty) e^{-\frac{Rt}{L}}
$$

\n
$$
I(\infty) = I(\infty) e^{-\frac{Rt}{L}}
$$

\nwhere $I(\infty)$ is steady, since the current

Sinusoidal Circuits

Tuesday, May 18, 2021 3:24 PM

Complex Numbers Review

Tuesday, May 18, 2021 4:14 PM

$$
\alpha = r cos \theta
$$

\n $r = \sqrt{a^2 + b^2}$
\n $\theta = r sin \theta$
\n $\theta = tan^{-1}(\frac{b}{a})$

Sinussidal waves can be written in complex 5 nm:
A cos (w6 + 0) =
$$
Ae^{j(w6+0)}
$$
 = $Ae^{j\theta}$ called phase representation
 $\frac{\partial}{\partial 6}(Ae^{j\theta}) = jwAe^{j\theta}$

Tuesday, May 18, 2021 4:27 PM

$$
V(t) = C cos(\omega t + \Theta)
$$

\nwhere $C = \sqrt{A^2 + B^2}$ and $\Theta = tan^{-1}(\frac{B}{A})$

thus:
\n
$$
V(\epsilon) = \frac{V_s}{\sqrt{1 + (\omega RC)^2}}
$$
 (2s (w² + 6an⁻¹($\frac{B}{A}$))
\n $= \frac{V_s}{\sqrt{1 + (\omega RC)^2}}$ e $-j \tan^{-1}(\omega RC)^2$

Sinusoidal RL Circuit

Thursday, May 20, 2021 3:37 PM

 $V_R = RI$ V_{L} = $L\frac{\partial I}{\partial E}$ = $j\omega LI$

Impedence

Thursday, May 20, 2021 4:01 PM

Det Impedence is the measure of electric l-sparsevition, 2

\n
$$
Z = R + i\% \qquad where \qquad R \text{ is the real part, } \% \text{ is the imaginary part.}
$$
\nResides: $Z_{R} = \mathbb{R}$

\nIndudes: $Z_{L} = j\omega L$

\nIn series: $\frac{1}{Z_{L} + Z_{L} + Z_{L} + Z_{S}}$

\nIn series: $\frac{1}{Z_{L} + Z_{L} + Z_{S} + Z_{S}}$

\nDoth: $Z = \frac{\overline{V}}{\underline{T}}$, $\overline{V} = \tilde{T}Z$, $\overline{T} = \frac{\overline{V}}{2}$

\nDoth: $\frac{1}{Z_{L}} + \frac{1}{Z_{L}} + \frac{1}{Z_{S}}$

\nDoth: $\frac{1}{Z_{L}} + \frac{1}{Z_{L}} + \frac{1}{Z_{S}}$

\nDoth: $\frac{1}{Z} = \frac{\overline{V}}{\underline{T}}$, $\overline{V} = \tilde{T}Z$, $\overline{T} = \frac{\overline{V}}{2}$

\nDoth: $\frac{1}{Z_{L}} + \frac{1}{Z_{L}} + \frac{1}{Z_{S}}$

\nDoth: $\frac{1}{Z_{L}} + \frac{1}{Z_{L}}$

\nDoth: $\frac{1}{Z_{$

AC Circuit Theorems

Tuesday, May 25, 2021 4:18 PM

Source Tradsformation!

Thus, we can solve for any Therenin circuit in AC with
the same technique as in DC.

AC Power

Thursday, May 27, 2021 4:42 PM

 G ; ven:

$$
V(t) = V_s \cos(\omega t + \theta)
$$

$$
I(t) = I_s \cos(\omega t + \phi)
$$

Then: Element absorbs and supplies power $p(t) = V(t) \cdot T(t)$

$$
\frac{\rho_{e+}}{\rho_{avg}} = V(t) = V(t) \cdot I(t) = V_{s} \cos(\omega t + \theta) \cdot I_{s} \cos(\omega t + \varphi)
$$
\n
$$
\rho_{avg} = \frac{1}{T} \int_{0}^{T} \rho(t)dt = \frac{V_{s}I_{s}}{T} \cdot \frac{\cos(\theta - \varphi)}{2} \cdot T = \frac{1}{2} V_{s}I_{s} \cos(\theta - \varphi)
$$

 b_i ven!

 $\widetilde{V} = V_{s} e^{j\theta}$ \tilde{I} = $I_s e^{i \varphi}$

 Det

$$
\widetilde{\rho} = \widetilde{\gamma} \cdot \widetilde{I} = V_s I_s e^{j(\theta + \varphi)}
$$
\n
$$
\widehat{\rho}_{\text{avg}}^{\gamma} = \frac{1}{2} V_s I_s \cos(\theta - \varphi) = \frac{1}{2} Re[\widetilde{V}_s \cdot \widetilde{I}_s]
$$

Average Power Supplied by R, L, C

Tuesday, June 1, 2021 3:36 PM

Resistor:
$$
P = \frac{1}{2}Re[\tilde{v}\cdot\tilde{I}] = \frac{1}{2}Re[\tilde{R}\cdot\tilde{T}\cdot\tilde{I}]
$$
 $P_{avg} = \frac{1}{2}R|\tilde{T}|^2$
Induction: $P = \frac{1}{2}Re[\tilde{v}\cdot\tilde{I}] = \frac{1}{2}Re[\tilde{j}\omega L\tilde{T}\cdot\tilde{T}]$ $P_{org} = 0$
Capactor: $P = \frac{1}{2}Re[\tilde{v}\cdot\tilde{T}] = \frac{1}{2}Re[\frac{\tilde{T}\cdot\tilde{T}}{2}]$ $P_{avg} = 0$